
LLNL-CONF-400261

TALC: A Simple C Language Extension
For Improved Performance and Code
Maintainability

J. Keasler, T. Jones, D. Quinlan

January 7, 2008

The 9th LCI International Conference on High-Performance
Clustered Computing
Urbana, IL, United States
April 28, 2008 through May 1, 2008

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

1 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344.

1

TALC: A Simple C Language Extension For Improved
Performance and Code Maintainability

Jeff Keasler Terry Jones Dan Quinlan
Lawrence Livermore National Laboratory1, Livermore, CA 94550, USA

Abstract: In this paper, we present TALC -- a small language extension for
C and C++ suitable for applications that traverse common data structures such as
large meshes or cubes. We make three contributions in this paper. First, we
motivate the need for a new C/C++ extension focused on addressing emerging
problem areas in performance and code maintainability. Second, we define the
language extension and illustrate how it is employed in C. Third, we demonstrate
the utility of such an extension by providing comparison code snippets that
demonstrate advantages in both software maintainability and performance.
Performance benefits of the extension are provided for several experiments
resulting in up to 200% speedups over more conventional methods to achieve the
same algorithm.

1. Introduction

This is a rewarding time for those practitioners who
develop scientific applications. Modern computer
architectures are more powerful than ever. The state of
the art in mesh-based and grid-based computing now
permits more accuracy and resolution than ever. Indeed,
computer modeling is joining theory and empirical trial
as a third component in physical sciences research.

The same advances that have extended the capabilities
of scientific applications have also generated new and
significant challenges. Whereas today’s computers have
more potential than ever before, realizing that potential
is becoming increasingly difficult due to new
performance issues and the same old software
engineering issues. To address these issues, we have
developed TALC, a new C language extension focused
on performance and software engineering problems.
The name TALC is an acronym for Topologically
Aware Layout C.

The outline of our paper is as follows. In section 2, we
provide the motivation for our work. In section 3, we
describe the resulting design of TALC. Section 4
provides a description of ROSE, a C-scoping compiler
infrastructure used in our implementation of TALC.
Section 5 discusses our results, and Section 6 describes
related work. Finally we provide our conclusions with
Section 7.

2. Motivation

2.1 Performance Considerations

TALC was designed to improve application
performance in several key aspects. Stall cycles have
become an important factor in determining an
applications performance. While little concern was
given to stall cycles at the advent of many of today’s
most prevalent languages including C and C++, the
dizzying speed of computer architecture innovation is
now challenging many long held beliefs. For instance,
previously conventional wisdom held that ‘multiply is
slow, but load and store is fast’. But today’s
conventional wisdom should be updated to a new view
that recognizes the “Memory wall”. [1] Now Load and
store is slow, but multiply is fast. Modern
microprocessors can take 200 clocks to access Dynamic
Random Access Memory (DRAM), but floating-point
multiplies may take only one clock cycle when
pipelined. Contemporary architectures experience as
much as 50% stall cycles for repetitive data-centric
tasks as measured by “typical applications” such as the
SPEC2000 CPU benchmark 181.mef. [2].

Moore’s law, the observation that ‘the number of
transistors that can be inexpensively placed on an
integrated circuit is increasing exponentially, doubling
approximately every two years,’ has given rise to a

2

renaissance of architectural diversity. Today’s
supercomputer center is faced with a vast array of
architectural choices where only one or two existed in
yesteryear. With each choice, whether it be multi-core,
Graphics GPU assisted core, added FPU unit core,
added Vector unit core, and so on, one fact remains
constant: the need for instructions and data is growing
at a much faster rate than that of memory bandwidth.
The use of multi-core and other advanced processor
technologies are expected to expand over the next few
years.

This is having a pronounced effect on application
performance as seen when looking at the period
between 1986 and 2006 using integer SPEC 2006
programs. [3] Performance improved by 52% per year
between 1986 and 2002. However since 2002,
performance has improved less than 20% per year. By
2006, processors will be a factor of three slower than if
progress had continued at 52% per year. [4]

When combined, these trends suggest that a key
component to current and future performance will be a
programmer’s ability to arrange the most accessed data
structures such that they are efficient with respect to
stalls. Furthermore, the rapidly changing architectural
landscape gives rise to the need for performance
portability, the desirable trait that allows optimizations
to carry-over from one computer architecture or
compiler to another. Portability is essential, since many
programs outlast their original platforms. In the
supercomputing arena, a computer has a typical useful
lifetime of 5 years, while many-decades-old
applications codes are still in daily use. [5]

2.2 Software Engineering Considerations

Another major goal for TALC is to improve software
maintainability. Scientific applications frequently
evolve over many years through the efforts of small to
medium size software teams. Given the complexity of
the applications, it is not surprising that these
applications are often several hundred thousand lines of
code or more. Just as performance considerations are
important, software engineering considerations must be
given a near equal priority. TALC attempts to improve
software by providing a stronger type system that can
be checked at compile-time.

C and C++ are often criticized for being cryptic. C is
able to adequately describe how an algorithm is to be
realized in the low-level machine oriented domain,
whereas it’s ability to describe the high-level what is to
be computed is obscured. [6] On the other hand, C++
uses objects to describe what high level problem is
being solved, but how that problem is being solved can
be lost in a sea of method calls, each responsible for a
small part of the task. TALC provides a happy medium

between these two extremes. It allows for highly
readable code that focuses on the what while at the
same time providing an understanding of the how.

There is no simple way to determine the highest
performance data structure across all possible
architectures at the beginning of a software project.
Once a data structure strategy is chosen for a large
application, any speculative attempt to convert to
another data structure for performance improvement
will likely be time-consuming and introduce errors.
Unfortunately, this limitation is at odds with the
ongoing trend in the industry. Fueled by Moore’s law,
system architectures continue to change over time. To
take full advantage of multi-core and other advanced
processor technologies, a large amount of code will
likely need to be rewritten, especially in the High
Performance Computing (HPC) arena. TALC mitigates
the effort of these rewrites by moving the data layout
problem to a higher level so that an important class of
layout choices can be implemented in minutes rather
than weeks or months. It also introduces a notation that
improves architectural portability.

3. The Design of TALC

TALC was designed to target applications such as Sn
transport, finite difference, finite volume, and finite
element methods on structured or unstructured meshes.
It also applies to many signal and image processing
algorithms. A further important set of applications that
can benefit from TALC are those that include multi-
dimensional arrays of data.

TALC is not a vector language as described in most of
the literature. [8, 9] Rather, TALC may be viewed as a
centralized way to select the generation of array or
struct memory layouts for array data, with the optional
capability to automatically generate subscript indices
within the context of loops. The TALC extension can
be incrementally introduced into existing C/C++ code.

3.1 The Data Layout Problem

Programmers have three basic choices for organizing
arrays of data, as shown in Figure 1. The performance
of each choice can vary greatly as code is ported from
machine to machine and compiler to compiler. The
execution of array statements involves inefficiencies
stemming from several sources and the problem has
been well documented, by many researchers [10,11,12].
Our approach to performance within TALC is to use
source-to-source transformation so that memory layout
decisions can be globally applied at compile time.

As an example of the data layout problem, consider the
consequences of struct-like data layouts. There are
many machines where a struct-like clustering is the

3

most efficient due to hardware factors such as a reduced
register pressure and enhanced memory streaming. On
the other hand, other processors have hardware features
and compiler optimizations that perform better with
array-like layouts, for example the SSE instructions on
the x86 architecture. You would like to be able to run in
both environments while compiling from a static code
base. This can be achieved with C++, but the resulting
code is not necessarily easy to read or maintain.

Sample Data Structures Commonly Found

In Mesh-Based Algorithms

Figure 1. Sample Data Layouts

3.2 Topological Grouping of Data

It is desirable to incorporate high-level concepts from
the problem domain into the data structures. This is
one of the key ideas behind object oriented
programming. An example of this might be to group
data having similar topological characteristics. By
topology, we mean not only a similar physical
topology, but also similar usage patterns.

Consider, for instance, coordinate components. Each
coordinate component array is associated with a
specific point in space, and each component array has
similar descriptive character and the same length. Such
arrays are referred to as topologically equivalent.

At times, it is useful to extend the concept of
topological scope to encompass a wider class of arrays.
Consider coordinate components and velocity
components. There will often be a velocity associated
with every coordinate and a coordinate associated with
every velocity. In this case the coordinates and
velocities are referred to as topologically similar.

In contrast, particle coordinates and mesh node
coordinates may have similar coordinate component
data, but particles often move independently from mesh

coordinates. Furthermore, particles will probably be
created and destroyed more often. For these reasons,
one typically does not group particle coordinates with
mesh coordinates. Such data items are referred to as
topologically dissimilar, in spite of having the same
underlying form of array data.

Grouping data by topological characteristics provides a
powerful tool for manipulating data, especially where
subsets are used heavily. TALC uses topological
grouping as a way to control data layouts in memory
and as a way to improve readability and correctness of
code.

3.3 How Schemas address the Data Layout Problem
and the Topological Grouping Problem

The TALC user begins by creating a single schema file
describing the topological grouping of array data in the
code. Topological grouping can be nested in
hierarchies to indicate a subset relationship. Within
each topological scope, the interleave of array data can
be controlled by the ordering of declarations.

A Vector Schema in TALC

View element
 Field deltz
 Field dxx dyy dzz dxy dxz dyz
 Field sxx syy
 Field txy txz tyz
 Field v vnew
 View material
 Field delts
 Field newSxx newSyy newSzz
 newTxy newTxz newTyz
 View
View

Figure 2. Sample Vector Schema Incorporating all context of
Array-like, Struct-like, and Clustered-Struct access

Figure 2 illustrates a sample schema. Topological
scopes are delimited by the View keyword. Array data
is declared with the Field keyword. When a name
appears by itself after a Field keyword, it indicates an
array-like representation. When multiple names appear
after a Field keyword, it represents a struct-like array
representation.

The schema describes relationships between arrays and
the layout of those arrays in memory. It does not
allocate memory. Instead, it cooperates with a memory
allocation API to impose rules on how allocations will
occur. The compiler can then use the schema to
generate structs or arrays as appropriate at compile
time. Since the groupings can be hierarchical, subtle
relationships among groups of arrays can easily be
captured and exploited.

4

3.4 Writing TALC Code

Once a TALC schema has been created, code fragments
that access arrays can be converted to use the TALC
extension. We will start by looking at C code. Figure 3
illustrates accessing mesh elements within a loop. Such
code snippets are common in unstructured mesh based
codes.

Potential Options for Mesh Access
(accessing mesh elements in a loop)

Array-Like Access

real8 quarterDelta = 0.25 * deltaTime;

 for (int i = 0 ; i < material_length ; i++){
 int index = material_map[i];
 real8 szz = - sxx[index] - syy[index] ;

 deltz[index] += quarterDelta * (vnew[index] + v[index]) *
 (dxx[index] * (sxx[index] + newSxx[i]) + dyy[index] * (syy[index] + newSyy[i]) +
 dzz[index] * (szz + newSzz[i]) +
 2.*dxy[index] * (txy[index] + newTxy[i]) + 2.*dxz[index] * (txz[index] + newTxz[i]) +
 2.*dyz[index] * (tyz[index] + newTyz[i])) ;

 delts[i] += quarterDelta * (vnew[index] + v[index]) *
 (dxx[index] * sxx[index] + dyy[index] * syy[index] + dzz[index] * szz +
 2.*dxy[index] * txy[index] + 2.*dxz[index] * txz[index] + 2.*dyz[index] * tyz[index]) ;
 }

Struct-Like Access

for (int i = 0 ; i < material_length ; i++){
 int index = material_map[i];
 real8 szz = - elem[index].sxx – elem[index].syy ;

 elem[index].deltz += quarterDelta * (elem[index].vnew + elem[index].v) *
 (elem[index].dxx * (elem[index].sxx + materialElem[i].newSxx) +
 elem[index].dyy * (elem[index].syy + materialElem[i].newSyy) +
 elem[index].dzz * (szz + materialElem[i].newSzz) +
 2.*elem[index].dxy * (elem[index].txy + materialElem[i].newTxy) +
 2.*elem[index].dxz * (elem[index].txz + materialElem[i].newTxz) +
 2.*elem[index].dyz * (elem[index].tyz + materialElem[i].newTyz)) ;

 materialElem[i].delts += quarterDelta * (elem[index].vnew + elem[index].v) *
 (elem[index].dxx * elem[index].sxx + elem[index].dyy * elem[index].syy +
 elem[index].dzz * szz + 2.*elem[index].dxy * elem[index].txy +
 2.*elem[index].dxz * elem[index].txz + 2.*elem[index].dyz * elem[index].tyz) ;
 }

Clustered-Struct Access

for (int i = 0 ; i < material_length ; i++){
 int index = material_map[i];
 real8 szz = - elem[index].sxx – elem[index].syy ;

 deltz[index] += quarterDelta * (volume[index].vnew + volume[index].v) *
 (deform[index].dxx * (stress[index].sxx + materialStress[i].newSxx) +
 deform[index].dyy * (stress[index].syy + materialStress[i].newSyy) +
 deform[index].dzz * (szz + materialStress[i].newSzz) +
 2.*deform[index].dxy * (stress[index].txy + materialStress[i].newTxy) +
 2.*deform[index].dxz * (stress[index].txz + materialStress[i].newTxz) +
 2.*deform[index].dyz * (stress[index].tyz + materialStress[i].newTyz)) ;

 delts[i] += quarterDelta * (volume[index].vnew + volume[index].v) *
 (deform[index].dxx * stress[index].sxx + deform[index].dyy * stress[index].syy +
 deform[index].dzz * szz + 2.*deform[index].dxy * stress[index].txy +
 2.*deform[index].dxz * stress[index].txz + 2.*deform[index].dyz * stress[index].tyz) ;
 }

Figure 3. Sample Access Patterns In A Loop

Figure 4 illustrates TALC code. All the sample C code
snippets in Figure 3 can be generated by the single
TALC code snippet in Figure 4, in combination with an
appropriate schema. In Figure 4, note that all mesh
indices have been stripped from all array operations in
the loop, and the for loop has been changed to a while
loop over an Indexset named material. IndexSets are a
TALC construct needed to define how loops are
traversed. Indexsets are allocated to correspond to a
schema View. Indexsets behave much like “regions” in
the ZPL [13] language, but Indexsets can be structured
or unstructured.

Resulting TALC Code Snippet

(Compiler will use schema to select from among Array-
like, Struct-like, Clustered-Struct)

TALC access

double quarterDelta = 0.25 * deltaTime;

 while(material) {
 real8 szz = - sxx - syy ;

 deltz += quarterDelta * (vnew + v) *
 (dxx * (sxx + newSxx) + dyy * (syy + newSyy) +
 dzz * (szz + newSzz) +
 2.*dxy * (txy + newTxy) + 2.*dxz * (txz + newTxz) +
 2.*dyz * (tyz + newTyz)) ;

 delts += quarterDelta * (vnew + v) *
 (dxx * sxx + dyy * syy + dzz * szz +
 2.*dxy * txy + 2.*dxz * txz + 2.*dyz * tyz) ;
 }

Figure 4. Resulting TALC Code.

Note that there are no subscripts in this TALC code
since array indices can be automatically generated from
the schema. A complete list of the automatic array
index transformations is included in Figure 5.

Sample TALC Transformations
(performed inside while loop)

Vector
variable used
inside a while

block

Transformation
produced in a for

statement

Comments

var var[index]
or

struct[index].var

autogenerate index for
correct memory
interleave and
topological subset,
based on schema and
compiler option

var[xxx] var[xxx]
or

struct[xxx].var

override - do what
user asks for

var(offset) var[index+offset]
or

struct[index+offset].var

for stencil
calculations

Figure 5. The language extension

5

3.5 Summary For Converting Code to TALC

There are four steps involved in a general strategy for
converting mesh-related algorithms from C or C++ to
TALC, namely:

• First, a schema is created to identify topological relationships
among Fields in the original C source code.

• Second, for loops over index variables are changed to while

loops over IndexSets.

• Third, the original C source code is modified by stripping

indices off of arrays in loops wherever appropriate.

• Fourth, the memory allocations for arrays of interest must use

the TALC memory allocator. Many scientific codes have
centralized their allocation policy (wrapped malloc, database,
etc.) which may simplify this step.

The current TALC compiler framework will instantiate
source code for a given schema, or directly produce a
‘.o’ file.

4. Implementing a TALC Prototype

The economics and maturation of new language and
compiler designs make it particularly difficult for
highly specialized languages to appear and be accepted
by developers of large scale applications. Though
significant aspects of our approach are language
independent, our research work has targeted the
optimization of array constructs in C/C++. The
framework developed to support this research, ROSE
[14], allows us to express optimizations based on an
abstract C++ grammar, eliminating the syntactical
idiosyncrasies of C++ in the specification of a
transformation.

4.1 The ROSE Framework

ROSE is a compiler infrastructure for building source-
to-source translators (compilers that take in source
code, implement programmable rewrites to the Abstract
Syntax Tree (AST) and then regenerate source code).
ROSE addresses Fortran 2003, C, and C++ and
provides a high level AST representation for custom
analysis and transformation of large scale DOE
applications. An explicit goal of ROSE has been to
significantly lower the barrier to research work having
impact on DOE scale applications. ROSE forms the
basis for a wide range of external and internal research
projects.

The design of the Intermediate Representation (IR) is
object-oriented and defines IR nodes for each language
construct of Fortran 2003, C, C++ and shared
approximately 85% of the IR nodes between all three
supported languages. ROSE supports all the numerous
details of reproducing the generated code
indistinguishable from the original input code because
this is important to our user base (details include:

formatting, comments, CPP directives, etc.). The
interface to the IR used in ROSE is based on SAGE
[15] and is similar to few other object-oriented IRs
which attempt to preserve the source level of detail.
While we have specific goals for this work within
research on the general optimization of high-level
abstractions, ROSE is a general infrastructure designed
as a library for building source-based tools.

ROSE is designed to use multiple internal language
front-ends and parsers. For C and C++ we use the EDG
front-end. [16] For Fortran 2003 we use the Los
Alamos Open Fortran Parser (OFP). [17] Older versions
of Fortran, specifically Fortran 95, Fortran 90, Fortran
77, and Fortran 66 are also supported. Special attention
has been paid to handling fixed and free format codes
and generating fixed for free format output. For C,
ROSE supports the full C89 and C99 versions, plus
most of the gnu extensions. For C++, ROSE supports
the full C++ language, and permits analysis and
transformation of all instantiated templates.

For all languages, ROSE provides full type evaluation
and semantic analysis. The C and C++ work has been
tested on a number of different million line applications
within DOE. The Fortran support is the most recent
work, and consequently is not as robust yet.

Support in ROSE includes: 1) the internal loop
optimizers that can be leveraged in building
optimization tools. 2) attribute grammar based AST
traversals to make it easy to define custom program
analysis and transformation passes. 3) shared memory
and distributed memory parallel attribute evaluation for
writing parallel program analysis (when program
analysis performance is critical). 4) an extensible tool,
Compass, for defining and evaluating properties on the
AST (used as a basis for security analysis research). 5)
Additional predefined optimizations (inlining, Partial
Redundancy Elimination (PRE), etc.) and useful
transformations to support external research (outlining).
6) Many more features are included in ROSE, which
has been an ongoing project for many years.

4.2 How ROSE Ensures Conformance for TALC

Because TALC is implemented using ROSE, it derives
its robustness and conformance to the C language from
ROSE (which derives its conformance to C via the
EDG front-end). Because the front-end is not modified
within the TALC work, there is no formal language
extension. More precisely, TALC represents an
extension as custom compiler support for a domain-
specific abstraction. It is however, superficially
indistinguishable from a true language extension.
Additionally as a domain-specific abstraction optimized
via custom transformations written using ROSE as a
source-to-source translator, the work is significantly
more portable than a formal language extension.

6

5. Results

To evaluate the performance capabilities of TALC, we
evaluated several common mesh access patterns on
three different architectures with several resulting data
layouts as automatically generated by TALC.

In Figure 6, a domain of 12000 elements contains two
sparse material subsets of 8000 and 4000 elements.
The 8000 element subset is traversed using the
algorithm shown in Figure 3. Normalized time is shown
in the Y-axis with (1.0) being the worst performing data
layout for the given architecture. Each architecture is
normalized independently. Note that the Itanium2 runs
at about the same speed no matter how we code the
algorithm. Note that Array-like is fastest for the
Itanium2, while struct-like is the fastest for the Power5.
Also, the spread between the times on the power5 is
large.

Figure 6. Mesh traversal performance for three

data layouts on three architectures

In Table 1, we show the L1 cache hit ratio for each data
layout in Figure 6 on the Opteron processor, as
measured by hardware counters. Looking at the L1
cache hit ratio, one would assume that the Array-like
layout is the most efficient. However if you sum the
cache hits and misses for each layout, you find that the
Struct-like access has the lowest number of memory
accesses, and thus the lowest number of stalls.

Memory
Interleave

Hit
Count

Miss
Count

Hit
Ratio

Array-like 3955732080 286239697 93.3%
Intermediate 2842569424 281404535 91.0%
Struct-like 2769568352 273753504 91.1%

Table 1. L1 cache statistics for the stress problem
on the Opteron processor.

The reason for the lower memory access is that base-
offset addressing can be used on a single pointer with
structs, but when individual arrays are used, each array
pointer must be given its own register. Since there are a

limited number of registers on the x86 architecture,
register pressure forces individual array pointers to be
swapped to memory as the algorithm progresses.
The lesson learned here is that raw cache hit numbers
can be misleading when optimizing for performance.

In Figure 7, we calculate volumes for hexahedral
elements in a 420K element mesh. Each element
touches eight nodes, and each node has three coordinate
components. As with the previous performance results,
normalized time is shown in the Y-axis with (1.0) being
the worst performing data layout for the given
architecture. A lower value represents a faster runtime.
Our results show that putting x, y, z in a struct (e.g.
class Point) is the slowest possible choice overall, even
though most people use a coord struct in their code!

Figure 7. Brick volume calculation performance for

four data layouts on three architectures.

Finally, figure 8 provides normalized times for a Jacobi
Iteration across a two-dimensional mesh. Such access
patterns can be employed as iterative solutions to a
Poisson problem. For our results, each interior element
is updated based on its neighbors to the north, south,
east, and west.

Figure 8. Jacobi Iteration performance for three

data layouts on three architectures.

7

Speedups exceeding 2x are certainly encouraging.
While effective cache utilization is a key element, our
observed gains go past cache hit ratios. As shown, a
high cache hit ratio is not necessarily a good measure of
a well written, high performance implementation of an
algorithm.

The following interpretations can be drawn from these
results. First, data structure choices are system
architecture and problem domain dependent. Second,
data structure choices can result in a 2x performance
difference on a given machine. Third, choosing a data
structure that is best for one machine can be the worst
for another machine.

There is no simple way to determine the best data
structure across all possible architectures at the
beginning of a software project. Once a data structure
strategy has been selected, it will likely be time-
consuming and error-prone to convert to another. Since
system architectures change over time, the need for an
automated solution such as TALC becomes a valuable
tool for those interested in performance portability.

5.2 TALC Benefits

As discussed in Section 5.1, TALC provides
performance portability for mesh-based applications
across a diversity of system architectures. TALC
centralizes the traversal policy permitting cache
blocking and data movement on a variety of
architectural models (multi-core, NUMA, GPGPU). By
allowing the user to choose the best data layout, TALC
enables up to 2x performance improvements .

TALC offers several important features that improve
code readability and correctness. Removal of explicit
subscripting can reduce or eliminate indexing errors.
The resulting coding of loops enhances the readability
of equations. The TALC schema enables the compiler
to provide stronger type checking operations to enforce
topological constraints. For instance, if an element
centered pressure is assigned to a node centered
coordinate, the compiler can immediately catch this
nonsensical assignment. The use of Indexsets also
allows better bounds checking on arrays than could be
done with raw mallocs. Finally, the schema can
simplify the refactoring of data structures when new
algorithms or physics packages are introduced, if for
instance a variable defined over the mesh were to be
moved to a variable defined only over a material subset.

The ability for TALC to handle these types of changes
without requiring corresponding code changes is a
major advantage. A large hydrodynamics code recently
went through a hand-refactoring process that could
have been done by TALC. Even though the code was
hundreds of thousands of lines, the code found that
changing the memory interleave of some arrays resulted

in a 42-100% speedup of the hydrodynamics depending
on the problem being solved and the machine being
used. The Hydrodynamics can be the dominant portion
of the runtime for many physics applications, so
doubling the performance with just a change of data
structures is impressive. Part of the performance gain
probably came from the compiler recognizing extra
optimizations that could be applied (same compiler
flags), and the rest came from different cache latency
characteristics.

Finally, the advantage of grouping arrays topologically
is that they can often be nested in inheritance
hierarchies. For example, one array class could contain
array data common to all the nodes of a mesh, while
another class could contain extra array data pertaining
to a subset of the nodes. Indexsets can be used to map
array indices in the subset to corresponding indices in
the larger mesh.

6. Related Work

An important topic covered by this paper is data
organization, which is separate from the topic of data
layout. An excellent introduction to the benefits of data
organization can be found in the paper, “Collection
Level Polymorphism: A Path to High Performance C++
Applications” by Luke [18]. Another excellent data
organization scheme is described in the paper, “Janus –
a C++ Template Library for Parallel Dynamic Mesh
applications” by Gerlach, et al . [19]

TALC tries to map the concepts presented in these two
papers to a form that has the look and feel of standard
C. In doing so, the introduction of an Indexset object
was needed. An Indexset is much like a ZPL [14]
Region, however an Indexset in TALC can be
structured or unstructured. Also unlike ZPL, TALC
does not try to be a language in and of itself, but merely
extends the concept of how subscripting operations
should work in the context of the C and C++ languages.

The TALC project is currently exploring an extension
to heterogeneous programming environments by
leveraging the RapidMind [20] platform. Other work in
heterogeneous programming environments can be
found in the paper “HMPP: A Hybrid Multi-core
Parallel Programming Environment” by Romain
Dolbeau, et al. [21]

7. Conclusions and Future Work

TALC is an extension to C that improves data layout
and code maintainability for applications that traverse
common data structures such as large meshes or cubes.
The use of TALC provides many benefits for mesh-
based projects. These applications frequently
encompass hundreds of thousands of lines of code and

8

are therefore prime candidates for software maintaina-
bility improvements. Furthermore, such applications are
frequently very CPU intensive and are also prime
candidates for performance improvements.

To achieve these benefits, TALC uses topological
grouping as a way to control data layouts in memory
and as a way to improve readability and correctness of
code.. We have implemented TALC using the ROSE
compiler infrastructure.

Our results demonstrate the minimal changes necessary
to rewrite existing mesh-based loop into TALC as well
as the potential for performance gains and software
maintainability improvements. Performance portability
is likely to become a necessary part of programming in
the near future. TALC transformations provide a
unified way of running effectively on a diversity of
system architectures to achieve up to 2x improvements
in runtime performance.

References

[1] Wulf, W. A. and McKee, S. A. 1995. Hitting the memory wall:

implications of the obvious. SIGARCH Comput. Archit. News
23, 1 (Mar. 1995), 20-24. DOI=
http://doi.acm.org/10.1145/216585.216588

[2] Gurumani, S. T. and Milenkovic, A. 2004. Execution

characteristics of SPEC CPU2000 benchmarks: Intel C++ vs.
Microsoft VC++. In Proceedings of the 42nd Annual Southeast
Regional Conference (Huntsville, Alabama, April 02 - 03,
2004). ACM-SE 42. ACM, New York, NY, 261-266. DOI=
http://doi.acm.org/10.1145/986537.986599

[3] Spec Benchmark Organization: http://www.spec.org

[4] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro,

Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A.
Patterson, William Lester Plishker, John Shalf, Samuel Webb
Williams and Katherine A. Yelick. The Landscape of Parallel
Computing Research: A View from Berkeley. Technical Report
UCB/EECS-2006-183. EECS Department, University of
California, Berkeley, Dec 2006.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-
2006-183.html

[5] National Research Council. 2005. Getting Up To Speed: The

Future of Supercomputing”, National Research Council, The
National Academies Press. Washington D.C.

[6] Ian Joyner, C++? A Critique of C++. 1992.

http://www.literateprogramming.com/c++critique.pdf

[8] Perrott, R. H. 1979. A Language for Array and Vector

Processors. ACM Trans. Program. Lang. Syst. 1, 2 (Oct. 1979),
177-195. DOI= http://doi.acm.org/10.1145/357073.357075

[9] Santavy, M. and Labute, P., SVL: The Scientific Vector

Language, 1997.
http://www.chemcomp.com/Journal_of_CCG/Features/svl.htm

[10] Bassetti, F., Davis, K., Quinlan, D. A Comparison of

Performance-enhancing Strategies for Parallel Numerical
Object-Oriented Frameworks In Proceedings of the first
International Scientific Computing in Object-Oriented Parallel
Environments (ISCOPE) Conference, Marina de1 Rey,
California, Dec, 1997

[11] Karmesin, et al. Array Design and Expression Evaluation in

POOMA II. In Proceeding of the Second International
Symposium, ISCOPE 98, Santa Fe, NM December 1998

[12] Bassetti, F., Davis, K., Quinlan, D. Optimizing Transformations

of Stencil Operations for Parallel Object-Oriented Scientific
Frameworks on Cache-Based Architectures In Proceedings of
the ISCOPE’ Conference, Santa Fe, New Mexico, Dee 13-16
1998

[13] Snyder, L. 2007. The design and development of ZPL. In

Proceedings of the Third ACM SIGPLAN Conference on
History of Programming Languages (San Diego, California,
June 09 - 10, 2007). HOPL III. ACM, New York, NY, 8-1-8-37.
DOI= http://doi.acm.org/10.1145/1238844.1238852. See also
http://www.cs.washington.edu/research/zpl/home/index.html

[14] D. Quinlan. ROSE: Compiler Support for Object-Oriented

Frameworks. LLNL Technical Report UCRL-ID-136515 (Nov.
1999). https://e-reports-ext.llnl.gov/pdf/237284.pdf

[15] B. Francois et. al. Sage++: An object-oriented toolkit and class

library for building fortran and C++ restructuring tools. In
Proceedings of the Second Annual Object- Oriented Numerics
conference, 1994.

[16] Edison Design Group http://www.edg.com

[17] Open FORTRAN Parser, http://fortran-parser.sourceforge.net/

[18] Edward Luke, Collection Level Polymorphism: A Path To High

Performance C++. Proceedings of The Fourth Annual Object-
Oriented Numerics Conference (OONSCI ’96), Missisppi State
University. http:// citeseer.ist.psu.edu/15741.html

[19] Gerlach, J., Sato, M., and Ishikawa, Y. 1998. Janus: A C++

Template Library for Parallel Dynamic Mesh Applications. In
Proceedings of the Second international Symposium on
Computing in Object-Oriented Parallel Environments
(December 08 - 11, 1998). D. Caromel, R. R. Oldehoeft, and M.
Tholburn, Eds. Lecture Notes In Computer Science, vol. 1505.
Springer-Verlag, London, 215-222.

[20] McCool, M. D. and D'Amora, B. 2006. Programming using

RapidMind on the Cell BE. In Proceedings of the 2006
ACM/IEEE Conference on Supercomputing (Tampa, Florida,
November 11 - 17, 2006). SC '06. ACM, New York, NY, 222.
DOI= http://doi.acm.org/10.1145/1188455.1188686. See also
http://www.rapidmind.com

[21] Dolbeau, Romain, Bihan, Stéphane, and Bodin, François.

HMPP™: A Hybrid Multi-core Parallel Programming
Environment. Proceedings of First Workshop on General
Purpose Processing on Graphics Processing Units, Boston, MA.
(Oct. 2007). : http://www.caps-
entreprise.com/en/documentation/caps-hmpp-gpgpu-Boston-
Workshop-Oct-2007.pdf

